Hằng đẳng thức bậc 3 đang được là thắc mắc được thật nhiều chúng ta học viên, SV dò xét dò xét. Chính vì vậy nội dung bài viết tiếp sau đây của Phạm Vũ Dương Sơn tiếp tục giúp đỡ bạn hiểu rằng hằng đẳng thức bậc 3 nhé.
Bạn đang xem: hằng đẳng thức mũ 3
- A3+ B3= (A + B)3-3AB(A + B)
- A3+ B3= (AB)3+3AB(AB)
- (A+B+C)3= A3+ B3+ C3+3(A+B)(A+C)(B+C)
- A3+ B3+ C3-3ABC = (A+B+C)(A2+ B2+ C2-AB-BC-CA)
- (AB)3+(BC)3+(CA)3= 3(AB)(BC)(CA)
- (A+B)(B+C)(C+A) – 8ABC = A(BC)2+ B(CA)2+ C(AB) 2
- (A+B)(B+C)(C+A) = (A+B+C)(AB+BC+CA)-ABC
7 hằng đẳng thức kỷ niệm lớp 8
Bình phương của một tổng
(a + b) ² = a² + 2ab + b² = (a – b) ² + 4ab
Diễn giải: Bình phương của một tổng nhị số vị bình phương của số loại nhất, cùng theo với nhị phiên tích của số loại nhất nhân với số loại nhị, cùng theo với bình phương của số loại nhị.
Bình phương của một hiệu
(a – b) ² = a² – 2ab + b² = (a + b) ² – 4ab
Diễn giải: Bình phương của một hiệu nhị số vị bình phương của số loại nhất, trừ lên đường nhị phiên tích của số loại nhất nhân với số loại nhị, cùng theo với bình phương của số loại nhị.
Hiệu của nhị bình phương
a² − b² = (a − b)(a + b)
Diễn giải: Hiệu nhị bình phương nhị số vị tổng nhị số ê, nhân với hiệu nhị số ê.
Lập phương của một tổng
(a + b) ³ = a³ + 3a²b + 3ab² + b³
Diễn giải: Lập phương của một tổng nhị số vị lập phương của số loại nhất, cùng theo với tía phiên tích bình phương số loại nhất nhân số loại nhị, cùng theo với tía phiên tích số loại nhất nhân với bình phương số loại nhị, rồi cùng theo với lập phương của số loại nhị.
Lập phương của một hiệu
(a – b) ³ = a³ – 3a²b + 3ab² – b³
Diễn giải: Lập phương của một hiệu nhị số vị lập phương của số loại nhất, trừ lên đường tía phiên tích bình phương của số loại nhất nhân với số loại nhị, cùng theo với tía phiên tích số loại nhất nhân với bình phương số loại nhị, tiếp sau đó trừ lên đường lập phương của số loại nhị.
Tổng của nhị lập phương
a³ + b³ = (a + b) (a² – ab + b²) = (a + b) ³ – 3a²b – 3ab² = (a + b) ³ – 3ab (a + b)
Diễn giải: Tổng của nhị lập phương nhị số vị tổng của nhị số ê, nhân với bình phương thiếu thốn của hiệu nhị số ê.
Hiệu của nhị lập phương
a³ – b³ = (a – b) (a² + ab + b²) = (a – b) 3 + 3a²b – 3ab² = (a – b) 3 + 3ab (a – b)
Diễn giải: Hiệu của nhị lập phương của nhị số vị hiệu nhị số ê, nhân với bình phương thiếu thốn của tổng của nhị số ê.
Hệ trái khoáy hằng đẳng thức
Ngoài đi ra, tao với 7 mặt hàng đẳng thức lớp 8 bên trên bên trên. Thường dùng trong lúc biến hóa lượng giác chứng tỏ đẳng thức, bất đẳng thức,..
Xem ngay: 50% giờ vị từng nào phút
Cách nhân nhiều thức với tương đối nhiều thức lớp 8
Qui tắc nhân nhiều thức với tương đối nhiều thức
Muốn nhân một nhiều thức với cùng một nhiều thức, tao nhân từng hạng tử của nhiều thức này với từng hạng tử của nhiều thức ê rồi với mọi tích cùng nhau.
Công thức
Cho A,B,C,DA,B,C,D là những nhiều thức tao có:
(A+B).(C+D)(A+B).(C+D)
=A(C+D)+B(C+D)=A(C+D)+B(C+D)
=AC+AD+BC+BD.=AC+AD+BC+BD.
Các dạng toán cơ bản
Dạng 1: Thực hiện nay luật lệ tính (hoặc rút gọn gàng biểu thức)
Phương pháp
Sử dụng quy tắc nhân nhiều thức với tương đối nhiều thức.
Ví dụ:
(x+1)(2x+1)=x.2x+x.1+1.2x+1.1=2×2+x+2x+1=2×2+3x+1(x+1)(2x+1)=x.2x+x.1+1.2x+1.1=2×2+x+2x+1=2×2+3x+1
Dạng 2: Tính độ quý hiếm biểu thức
Phương pháp
Giá trị của biểu thức f(x)f(x) tại x0x0 là f(x0)f(x0)
Ví dụ:
Tính độ quý hiếm của biểu thức:
A=(x−1)(x2+1)−(2x+3)(x2−2)A=(x−1)(x2+1)−(2x+3)(x2−2) tại x=2x=2
Ta có:
A=(x−1)(x2+1)−(2x+3)(x2−2)
⇔A=x.x2+x.1−1.x2−1.1−2x.x2+2x.2−3.x2+3.2
⇔A=x3+x−x2−1−2×3+4x−3×2+6
⇔A=−x3−4×2+5x+5A=(x−1)(x2+1)−(2x+3)(x2−2)
⇔A=x.x2+x.1−1.x2−1.1−2x.x2+2x.2−3.x2+3.2
⇔A=x3+x−x2−1−2×3+4x−3×2+6⇔A=−x3−4×2+5x+5
Tại x=2x=2 ta có:
A=−23−4.22+5.2+5=−9A=−23−4.22+5.2+5=−9.
Dạng 3: Tìm xx
Phương pháp
Sử dụng những quy tắc nhân nhiều thức với tương đối nhiều thức nhằm biến hóa trả về dạng tìm xx cơ bạn dạng.
Ví dụ:
Tìm x biết:
(x+2)(x+3)−(x−2)(x+5)=6(x+2)(x+3)−(x−2)(x+5)=6
Ta có:
(x+2)(x+3)−(x−2)(x+5)=6
⇔x.x+3.x+2.x+2.3−x.x−5.x+2.x+2.5=6
⇔x2+3x+2x+6−x2−5x+2x+10=6
⇔2x+16=6⇔2x=−10
⇔x=−5(x+2)(x+3)−(x−2)(x+5)=6
⇔x.x+3.x+2.x+2.3−x.x−5.x+2.x+2.5=6
⇔x2+3x+2x+6−x2−5x+2x+10=6
⇔2x+16=6
⇔2x=−10
⇔x=−5
Bài tập luyện nhân nhiều thức với tương đối nhiều loại lớp 8
Bài 1: Kết trái khoáy của luật lệ tính (x -2)(x +5) vị ?
A. x2 – 2x – 10.
B. x2 + 3x – 10
C. x2 – 3x – 10.
D. x2 + 2x – 10
Bài 2: Thực hiện nay luật lệ tính ta với sản phẩm là ?
A. 28x – 3.
B. 28x – 5.
C. 28x – 11.
D. 28x – 8.
Bài 3: Giá trị của x vừa lòng ( x + 1 )( 2 – x ) – ( 3x + 5 )( x + 2 ) = – 4×2 + một là ?
A. x = – 1.
B. x =
C. x = .
D. x = 0
Bài 4: Biểu thức rút gọn gàng của biểu thức A = ( 2x – 3 )( 4 + 6x ) – ( 6 – 3x )( 4x – 2 ) là ?
A. 0 B. 40x
C. -40x D. Kết trái khoáy không giống.
Bài 5: Rút gọn gàng biểu thức A = (x + 2).(2x – 3) + 2 tao được:
A. 2×2+ x – 4 B. x2+ 4x – 3
Xem thêm: code x2 kinh nghiệm blox fruit update 18
C. 2×2– 3x + 2 D. –2×2+ 3x -2
Bài 6: Rút gọn gàng biểu thức A = (2×2 + 2x).(-2×2 + 2x ) tao được:
A. 4×4+ 8×3+ 4×2 B. –4×4 + 8×3
C. –4×4+ 4×2 D. 4×4 – 4×2
Có thể chúng ta cần: Cách tính lượng riêng
Bài 7: Tính độ quý hiếm biểu thức: A = (x + 3).(x2 – 3x + 9) bên trên x = 10
A.1980 B. 1201
C. 1302 D.1027
Bài 8: Tìm x biết: (2x + 2)(x – 1) – (x + 2).(2x + 1) = 0
Bài 9: Tìm x biết: (3x + 1). (2x- 3) – 6x.(x + 2) = 16
A. x = 2 B. x = – 3
C. x = – 1 D. x = 1
Giải tập luyện nhân đơn thức với tương đối nhiều thức toán lớp 8 lựa chọn lọc
Câu 1: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta với ( x – 2 )( x + 5 ) = x( x + 5 ) – 2( x + 5 )
= x2 + 5x – 2x – 10 = x2 + 3x – 10.
Chọn đáp án B.
Câu 2: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta với ( x + 1 )( 2 – x ) – ( 3x + 5 )( x + 2 ) = – 4×2 + 1
⇔ ( 2x – x2 + 2 – x ) – ( 3×2 + 6x + 5x + 10 ) = – 4×2 + 1
⇔ – 4×2 – 10x – 8 = – 4×2 + 1 ⇔ – 10x = 9 ⇔ x =
Vậy nghiệm x ở đây là .
Chọn đáp án B.
Câu 3: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta với ( x + 1 )( 2 – x ) – ( 3x + 5 )( x + 2 ) = – 4×2 + 1
⇔ ( 2x – x2 + 2 – x ) – ( 3×2 + 6x + 5x + 10 ) = – 4×2 + 1
⇔ – 4×2 – 10x – 8 = – 4×2 + 1 ⇔ – 10x = 9 ⇔ x = – 9/10
Vậy độ quý hiếm x cần thiết dò xét là x = – 9/10.
Chọn đáp án B.
Câu 4: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta với A = ( 2x – 3 )( 4 + 6x ) – ( 6 – 3x )( 4x – 2 )
= ( 8x + 12×2 – 12 – 18x ) – ( 24x – 12 – 12×2 + 6x )
= 12×2 – 10x – 12 – 30x + 12×2 + 12 = 24×2 – 40x.
Chọn đáp án D.
Câu 5: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta có: A = (x + 2).(2x – 3) + 2
A = x.(2x – 3) + 2. (2x – 3) + 2
A = 2×2 – 3x + 4x – 6 + 2
A = 2×2 + x – 4
Chọn đáp án A.
Câu 6: Giải bài tập luyện toán 8
Hướng dẫn giải chi tiết
Ta có: A = (2×2 + 2x).(-2×2 + 2x )
A = 2×2.(-2×2 + 2x) + 2x.(-2×2 + 2x)
A = 2×2.(-2×2) + 2×2.2x + 2x. (-2×2) + 2x .2x
A = -4×4 + 4×3 – 4×3 + 4×2
A = -4×4 + 4×2
Chọn đáp án C.
Câu 7: Giải bài bác tập luyện toán 8
Hướng dẫn giải chi tiết
Ta có: A = (x + 3).(x2 – 3x + 9)
A = x .(x2 – 3x + 9) + 3.(x2 – 3x + 9)
A = x3 – 3×2 + 9x + 3×2 – 9x + 27
A = x3 + 27
Giá trị biểu thức khi x = 10 là : A = 103 + 27 = 1027
Chọn đáp án D.
Câu 8: Giải bài bác tập luyện toán 8
Hướng dẫn giải chi tiết
Ta có: (2x + 2)(x – 1) – (x + 2).(2x + 1) = 0
⇔ 2x.(x – 1) + 2(x – 1) – x(2x + 1) – 2.(2x +1)= 0
⇔ 2×2 – 2x + 2x – 2 – 2×2 – x – 4x – 2 = 0
⇔ – 5x – 4 = 0
⇔ – 5x = 4
⇔ x =
Chọn đáp án A.
Câu 9: Giải bài bác tập luyện toán 8
Hướng dẫn giải chi tiết
Ta có:
⇔ (3x + 1).(2x – 3) – 6x.(x + 2) = 16
⇔ 3x(2x – 3) + 1.(2x – 3 ) – 6x. x – 6x . 2 = 16
⇔ 6×2 – 9x + 2x – 3 – 6×2 – 12x = 16
⇔ -19x = 16 + 3
⇔ – 19x = 19
⇔ x = – 1
Chọn đáp án C
Bài ghi chép mới
Xem thêm: cách đánh dấu tích vào ô vuông trong word
Bình luận